2.5D CAM Software: Milling and Drilling
Efficient programming with hyperMILL®
Typical 2.5D drilling and milling tasks can be programmed efficiently using hyperMILL® CAM software.
hyperMILL® 2.5D machining is typically applied to plate processing in tool and mold manufacturing. Pocket machining, plane levels, contours and drill holes present very unique challenges here. Intelligent mechanisms, such as the recognition of pocket features can now help the CAM user to program faster than ever before.
With its high-performance cutting functions (HPC), hyperMILL® MAXX Machining will boost machining performance during 2.5D roughing.
Accelerated 2.5D programming
2D components normally offer great potential for process automation. hyperMILL® therefore provides a new and comprehensive solution that allows programming to be completely automated. All 2.5D strategies can also be applied to multi-axis machining.
Videos: 2.5D CAM strategies
hyperMILL® 2.5D-Strategies: T-Slot Milling on 3D Model
Did you know that also T-slots can be programmed quickly and comfortably with hyperMILL®‘s feature technology? Feature-based machining speeds up and simplifies NC programming by using automated programming sequences.
Milling: 2.5D strategies
- Pocket Milling
- Rectangular Pocket
- Inclined Pocketing
- Contour Milling
- Contour Milling on 3D models
- Inclined Contouring
- Chamfer Milling on 3D models
- Rest Machining
- Face Milling
- Playback Milling
- Plunge Milling
- Multi-axis indexing with fixed tool angle
Drilling: 2.5D strategies
- Centring
- Simple Drilling
- Drilling with chip break
- Drilling with pecking cycle
- Reaming
- Tapping
- Thread Milling
- Boring
- Helical Drilling
- Drilling circular pockets
- Gun Drilling
Would you like to learn more about hyperMILL®
CAM software?
If so, please contact OPEN MIND at Info.Americas@misaificaopenmind-tech.com
2.5D milling strategies
Discover a selection of our 2.5D milling strategies in detail
Pocket Milling
Pocket Milling is suitable for the machining of straight and inclined pockets with any contour. This includes the automatic recognition of islands and rest material areas. Open and closed pockets can also be machined without any issues when using the ‘Pocket Milling’ strategy.
Contour Milling
Contour Milling optimizes the machining of open and closed contours with the option of path compensation, automatic rest material detection and the machining of undercut contours that can be difficult to access. The ‘Contour Milling on 3D Model’ strategy also includes:
- Collision check for the 3D model
- Automatic contour optimization and sorting
- Trimming of toolpaths to stock or model
- Automatic approach and retract strategies
Rest Machining
During 2.5D contour and pocket machining, some areas cannot be machined with larger tools. The rest material strategy detects these component features and calculates separate toolpaths that can be machined with smaller tools.
Plunge Milling
Multi-axis indexing
All 2.5D machining strategies can also be applied to multi-axis indexing with a fixed tool angle. During this process, the orientation of machining is defined using a frame. Simple frame definition and management assist the user in programming operations with tilted fourth and fifth axes. With transformations in the NC programs, users can easily and conveniently create programs for multiple components clamped within a single plane or in a tombstone fixture, for instance. All traverse movements are checked for collisions and path-optimized.
Benefits of 2.5D milling strategies
-
Collision-checked with precise toolpaths
-
Detailed simulation
-
Optimal approach and retract strategies for all cycles
-
Simple and fast programming with feature and macro technology
Request Information
Please use the form below for more information about hyperMILL® CAM software and our services. Our knowledgeable sales staff will follow up with you, and answer any questions you may have about capabilities, pricing, training and support.
You can find information on data protection, your rights as a data subject, and how personal data is handled at OPEN MIND in our privacy policy.
Fields marked with * are required.